Articles–Raghu Raghavan

  • [75] Brady ML, Grondin R, Zhang Z, Pomerleau F, Powell D, Huettl P, Wilson M, Stice J, Gerhardt GA, Abramov V, Raghavan R. In-vitro and in-vivo performance studies of a porous infusion catheter designed for intraparenchymal delivery of therapeutic agents of varying size. J Neurosci Methods. 2022 Aug 1;378:109643. doi: 10.1016/j.jneumeth.2022.109643. Epub 2022 Jun 9. PMID: 35691412.
  • [74] Raghu Raghavan. Uses of caustics: creating and steering stable hotspots in acoustics and optics. 2021. PREPRINT DOI:a10.13140/RG.2.2.24300.49284.
  • [73] Raghu Raghavan and Martin L. Brady. Direct Simplicial Dynamics: simulations in biomechanics. Engineering Reports, 2:12109, 2021. DOI: 10.1002/eng2.12109.
  • [72] Raghu Raghavan. Growth and form, Lie algebras and special functions. Mathematical Biosciences and Engineering, 18:3598-3645, 2021. Special Issue: Symmetry methods and numerical methods: theory and applications to Biology and Science of Life Modeling. DOI: 10.394/mbe.2021181.
  • [71] Martin L. Brady, Raghu Raghavan, and John H. Sampson. Determinants of intraparenchymal infusion distributions: modeling and analyses of human glioblastoma trials. Pharmaceutics, 12(9):895, 2020. DOI: 10.390/pharmaceutics12090895 (37 pages).
  • [70] Avishai Ben-David and Raghu Raghavan. Inverse functions for Monte Carlo simulations with applications to hitting time distributions. Engineering Reports, 3:12302, 2020. DOI: 10.1002/eng2.12302.
  • [69] Raghu Raghavan. Hitting time distributions for efficient simulations of drift-diffusion processes. Eng. Reports, 2:12109, 2020. DOI: 10.1002/eng2.12109.
  • [68] Raghu Raghavan and Martin L. Brady. Efficient numerical solutions of Neumann problems in inhomgeneous media from their probabilistic representations and applications. Eng. Reports, 2:12108, 2020. DOI: 10.1002/eng2.12108.
  • [67] Martin Lee Brady, Raghu Raghavan, Benjamin Grabow, and Walter F. Block. Backflow mitigation in stepped catheters. 2019. PREPRINT DOI:10.13140/RG.2.2.30212.27522.
  • [66] Raghu Raghavan. Interstitial flow, pathological states, and stem cell delivery in the brain. 2019. PREPRINT DOI:10.13140/RG.2.2.33787.57123.
  • [65] M. L. Brady, R. Raghavan, J. Mata, M. Wilson, S. Wilson, R. M. Odland, and W. C. Broaddus. Large-volume infusions into the brain: a comparative study of catheter designs. Stereotact. Funct. Neurosurg., 96:135-141, 2018.
  • [64] M. L. Brady, King Scott Coffield, Thomas J. Kuehl, R. Raghavan, V. O. Speights Jr., Belur Patel, Scott Wilson, Mike Wilson and Rick M. Odland. A pilot study in intraparenchymal therapy delivery in the prostate: a comparison of delivery with a porous needle vs standard needle. BMC Urology 18:66, 2018. DOI: 10.1186/s12894-018-0378-8.
  • [63] Raghu Raghavan. Theory for acoustic streaming in soft porous matter and its application to ultrasound-enhanced convective delivery. Journal of Therapeutic Ultrasound, 6:6:26, 2018. PMID 30083324.
  • [62] Hoang-Kim Le, Martin Brady, King Scott Coffield, Thomas Kuehl, Raghu Raghavan, V. O. Speights, Jr., Belur Patel, Scott Wilson, Mike Wilson, Rick Odland. Intraparenchymal therapy delivery in the prostate: the role of imaging and device design. J. Urology, 197(4S):e710, 2017.
  • [61] Raghu Raghavan, Roger W. Howell and Michael R. Zalutsky. A model for optimizing delivery of targeted radionuclide therapies into resection cavity margins for the treatment of primary brain cancers. Biomed Phys. Eng. Express, 3(3):035005, 2017.
  • [60] Raghu Raghavan and Rick Odland. Theory of porous catheters and their applications in intraparenchymal infusions. Biomed Phys. Eng. Express 3:025008, 2017.
  • [59] Raghu Raghavan, Martin L. Brady, and John H. Sampson. Delivering therapy to target: improving the odds for successful drug development. Ther. Deliv. 7(7):457-481, 2016.
  • [58] Martin L. Brady, Raghu Raghavan, Walter Block, Benjamin Grabow, Chris Ross, Ken Kubota, Andrew Alexander, and Marina E. Emborg. The Relation between Catheter Occlusion and Backflow during Intraparenchymal Cerebral Infusions. Stereotact. Funct. Neurosurg. 93(2):102-109, 2015.
  • [57] Martin L. Brady, Raghu Raghavan, Deep Singh, P J Anand, Adam S. Fleisher, Jaime Mata, William C. Broaddus, and William L. Olbricht. In-vivo performance of a micro-fabricated catheter for intraparenchymal delivery. Journal of Neuroscience Methods. 229: 76-83, 2014.
  • [56] K. Sillay, A. Hinchman, L. Kumbier, D. Schomberg, C. Ross, K. Kubota, M. Brady, E. Brodsky, G. Miranpuri, and R. Raghavan. Strategies for the Delivery of Multiple Collinear Infusion Clouds in Convection-Enhanced Delivery in the Treatment of Parkinson's Disease. Stereotact. Funct. Neurosurg. 91:153-161, 2013.
  • [55] Martin L. Brady, Raghu Raghavan, Andrew Alexander, Ken Kubota, Karl Sillay, and Marina E. Emborg. Pathways of Infusate Loss during Convection-Enhanced Delivery into the Putamen Nucleus. Stereotact. Funct. Neurosurg. 91:69-78, 2013.
  • [54] Ankit I. Mehta, Bryan D. Choi, Divya Ajay, Raghu Raghavan, Martin Brady, Allan H. Friedman, Ira Pastan, Darell D. Bigner, and John H. Sampson. Convection Enhanced Delivery of Macromolecules for Brain Tumors. Current Drug Discovery Technologies, 9:305-310, 2012.
  • [53] John H Sampson, Martin Brady, Raghu Raghavan, Ankit I Mehta, Allan H Friedman, David A Reardon, Neil A Petry, Daniel P Barboriak, Terence Z Wong, Michael R Zalutsky, Denise M Lally-Goss, and Darell D Bigner. Co-localization of gadolinium-DTPA with high molecular weight molecules after intracerebral convection-enhanced delivery in man. Neurosurgery, 98:1-7, 2011.
  • [52] Ankit I. Mehta, Bryan D. Choi, Raghu Raghavan, Martin Brady, Allan H. Friedman, Darell D. Bigner, Ira Pastan, and John H. Sampson. Imaging of Convection Enhanced Delivery of Toxins in Humans. Toxins, 3:201-206, 2011.
  • [51] David Poston, Raghu Raghavan, and George T. Gillies. Catheter delivery systems for infusion into the cortex. Journal of Medical Engineering and Technology, 5:246-253, 2011.
  • [50] Raghu Raghavan and Martin Brady. Predictive models of pressure-driven infusions into brain parenchyma. Physics in Medicine and Biology, 56:1-26, 2011.
  • [49] Martin Brady, Raghu Raghavan, Zhi jian Chen, and William C. Broaddus. Quantifying fluid infusions and tissue expansion in brain. IEEE Transactions on Biomedical Engineering, 58:2228-2237, 2011.
  • [48] M. E. Emborg, V. Joers, R. Fisher, K. Brunner, V. Carter, C. Ross, R. Raghavan, M. Brady, J. Raschke, K. Kubota, and A. Alexander. Intraoperative intracerebral MRI-guided navigation for accurate targeting in non-human primates. Cell Trans­plantation, 19:1587-1597, 2010.
  • [47] Raghu Raghavan, Samuel Mikaelian, Martin Brady, and Zhi-Jian Chen. Fluid infu­sions from catheters into elastic tissue I: azimuthally symmetric backflow in homoge­neous media. Physics in Medicine and Biology, 55:281-304, 2010.
  • [46] D. Ding, C. W. Kanaly, D. D. Bigner, T. J. Cummings, I. Pastan, and R. Raghavan. Convection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1. Journal of Neuro-oncology, 98:1-7, 2010.
  • [45] J. H. Sampson, G. E. Archer, C. Pedain, E. Wembacher-Schroder, M. Westphal, S. Kunwar, M. A. Vogelbaum, A. Coan, J. E. Herndon, R. Raghavan, M. L. Brady, D. A. Reardon, A. H. Friedman, H. S. Friedman, I. Rodriguez-Ponce, S. Chang S. Mittermeyer, D. Croteau, and R. Puri. Poor drug distribution as a possible explana­tion for the results of the PRECISE trial. Journal of Neurosurgery, 113:301-309, 2010.
  • [44] D. Ding, C. W. Kanaly, T. J. Cummings, J. E. Herndon, R. Raghavan, and John H Sampson. Long-term safety of combined intracerebral delivery of free gadolinium and targeted chemotherapeutic agent PRX321. Neurological research, 32:810-815, 2010.
  • [43] Sampson, J.H., Raghavan, R., Brady, M., Provenzale, J., Herndon, II, J., Croteau, D., Friedman, A., Reardon, D., Coleman, R.E., Wong, T., Bigner, D., Pastan, I., Rodriguez-Ponce, M., Tanner, P., Puri, R., Pedain, C.: Clinical Utility of a Patient-specific Algorithm for Simulating Intracerebral Drug Infusions. Neuro-oncol., 9:343-353, 2007.
  • [42] John H. Sampson, Raghu Raghavan, James Provenzale, David Croteau, David Reardon, R. Edward Coleman, Inmaculada Rodriguez-Ponce, Ira Pastan, Raj Puri, and Christoph Pedain. Induction of hyperintense signal on T2-weighted images correlates with infusion distribution from intracerebral convection-enhanced delivery of tumor-targeted toxin. Amer. J. Roentgenology, 188:703–709, 2007.
  • [41] Raghu Raghavan. Torquato, Tuch, and tortuosity: from difffusion tensors to others. 2006. PREPRINT DOI:10.13140/RG.2.2.16431.38569.
  • [40] R. Raghavan, Brady, M.L., Rodriguez-Ponce, M.I., Hartlep, A., Pedain, C., Sampson, J.H., Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg. Focus 20:E12, 2006.
  • [39] Kartik Venketeraman, Suresh Lodha, and Raghu Raghavan. A kinematic-variational model for animating skin with wrinkles. Computers and Graphics, 29:756 – 770, 2005.
  • [38] M. A. Bauman, G. T. Gillies, R. Raghavan, M. L. Brady, and C. Pedain. Physical characterization of neurocatheter performance in a brain phantom gelatin with nanoscale porosity: steady-state and oscillatory flows. Nanotechnology, pages 92–97, 2004.
  • [37] Zhijian Chen, William C Broaddus, Raju R Viswanathan, Raghu Raghavan, and George T Gillies. Intraparenchymal drug delivery under pressure infusion. IEEE Transactions on Biomedical Engineering, 49:85–96, 2002.
  • [36] W. Lawton, R. Raghavan, R. R. Viswanathan, and Yi Yu. A “civil engineering" description of protein shape changes. Journal of Molecular Modeling, 5:17–36, 1999.
  • [35] W. Lawton, R. Raghavan, S. R. Ranjan, and R. R. Viswanathan. Tubes in tubes: catheter navigation in blood vessels and its applications. International Journal of Solids and Structures, 37:3031–3054, 2000.
  • [34] Shiaofen Fang, Rajagopalan Srinivasan, Raghu Raghavan, and Joan T. Richtsmeier. Volume morphing and rendering: an integrated approach. Computer Aided Graphics Design, 17:59–81, 1999.
  • [33] W. Lawton, R. Raghavan, and R. Viswanathan. Ribbons and Groups: a thin rod theory for catheters and proteins. Journal of Physics A, 33:1709–1735, 1999.
  • [32] J. A. Anderson and R. Raghavan. Virtual Reality in Interventional Radiology. Minimal Invasive Therapy and Allied Technologies, 6:111–116, 1997. 1
  • [31] Wayne Lawton, Tim Poston, Raghu Raghavan, Raju Viswanathan, Yi Yu, and Y. P. Wang. Variational Methods in Biomedical Computing. Computational Science for the 21st Century, John Wiley, pages 447–456, 1997.
  • [30] R. Raghavan, S. R. Ranjan, R. Viswanathan, and W. Lawton. A continuum mechanical model for cortical growth. Journal of Theoretical Biology, 187:285–296, 1997.
  • [29] J. K. Raphel, R. Raghavan, W. L. Nowinski, and S. Meiyappan. Registering Patterns of the Ono Cerebral Sulci Atlas. NeuroImage (Academic Press), 5:S413, 1997.
  • [28] Jose K. Raphel, R. Raghavan, Ng Hern, and R. Mullick. Tools for Refining Registration of Cerebral Sulcal Atlas Patterns NeuroImage (Academic Press), 5:S411, 1997.
  • [27] Wieslaw Nowinski, Anthony Fang, Bonnie Nguyen, Lakshmipathy Jagannathan, Jose Raphel, Raghu Raghavan, R. Nick Bryan, and Gerald A. Miller. Multiple brain atlas database and atlas-based neuroimaging system. Computer Aided Surgery, 2:42–66, 1997.
  • [26] Shiaofen Fang, Rajagopalan Srinivasan, Su Huang, and Raghu Raghavan. Deformable Volume Rendering by 3D texture mapping and Octree encoding. Visualization ’96, pages 73–80 and 469, 1996.
  • [25] Jose K. Raphel, Raghu Raghavan, and Wieslaw Nowinski. Interactive Internet Atlases in Java. Neuroimage, 3, 1996.
  • [24] R. Raghavan, H. T. Nguyen, S. Fang, S. Lele, and J. T. Richtsmeier. Three-dimensional morphing of anthropoid craniofacial morphology for the study of growth and evolution. American Journal of Physical Anthropology, Supplement, 22:193, 1996.
  • [23] M. Brady, K. K. Jung, H. T. Nguyen, R. Raghavan, and R. R. Subramonian. The assignment problem on parallel architectures. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 12:469–517, 1993.
  • [22] R. Raghavan. Cellular Automata in Pattern Recognition. Information Sciences, 70:145–177, 1993.
  • [21] F. W. Adams Jr., H. T. Nguyen, R. Raghavan, and J. Slawny. A Parallel Network for Visual Cognition. IEEE Transactions on Neural Networks, 3:906–922, 1992.
  • [20] M. Brady, R. Raghavan, and J. Slawny. Back Propagation Fails to Separate where Perceptrons Succeed. IEEE Transactions on Circuits and Systems, 36:665–674, 1989.
  • [19] C. G. Morgan-Pond and R. Raghavan. Effects of Doping and Alloying in HgCdTe. Defects in Semiconductors, Materials Science Forum TransTech Publications, Switzerland (H.J. von Bardeleben, ed.), X-XII:79, 1986.
  • [18] R. Raghavan and P. M. Levy. Are ESR Lines in Spin Glasses Exchange Narrowed? J. Magnetism and Magnetic Materials, 5A:181, 1986.
  • [17] S. H. Shin, M. Khoshnevisan, R. Raghavan, and C. G. Morgan-Pond. Cation Vacancy Formation Energies in LPE HgCdTe. Journal of Applied Physics, 31:1470, 1985.
  • [16] C. G. Morgan-Pond and R. Raghavan. Structural Quality of HgCdTe: Equilibrium Point Defects. Physical Review B., 31:6616, 1985.
  • [15] R. Raghavan and P. M. Levy. Electron Spin Resonance in the Insulating Spin Glass EuSrS. Journal of Applied Physics, 57:3386, 1985.
  • [14] K. S. Miller, R. Raghavan, and M. M. Rochwarger. Invariance in Moving Target Detection. IEEE Transactions in Information Theory, IT-31, page 69, 1985.
  • [13] P. M. Levy, C. G. Morgan-Pond, and R. Raghavan. Mode Coupling Calculations of Electron Spin Resonance in Long Range Spin Glasses. Physical Review, B 30:2358, 1984.
  • [12] R. Raghavan. A Study of Localization in Site Dilute Systems by Tridiagonalization. Physical Review, B29:529, 1984.
  • [11] S. M. Chitanvis and R. Raghavan. Transport Coeffcients in Multi-Orbital Models of Substitutional Alloys. Physical Review, B28:5964, 1983.
  • [10] P. M. Levy, C. G. Morgan-Pond, and R. Raghavan. Electron Spin Resonance in Metallic Spin Glasses above Tg. Physical Review Letters, 50:1160, 1983.
  • [9] R. Raghavan and D. C. Mattis. Quantum Percolation in Dilute Lattices. Physica, 107B:671, 1981.
  • [8] R. Raghavan and D. C. Mattis. Eigenfunction Localization in Dilute Lattices of Various dimensionalities. Physical Review, B23:4791, 1981.
  • [7] D. C. Mattis and R. Raghavan. Eigenvalues of a Random Hamiltonian by Tridiagonalization. Physics Letters, 75A:313, 1980.
  • [6] L. Krusin-Elbaum, R. Raghavan, and S. J. Williamson. Evidence for a New State in Aluminosilicate Spin-glasses in Very Weak Magnetic Fields. Physical Review Letters, 42:1762, 1979.
  • [5] R. Raghavan and P. M. Levy. One Dimensional Cubic Spin Models with Competing Bilinear and Higher-degree Pair Interactions in a Magnetic Field. Journal of Applied Physics, 50:2037, 1979.
  • [4] R. Raghavan. The Landau Model with Several Order Parameters. Journal of Physics, A11:731, 1978.
  • [3] D. L. Huber and R. Raghavan. Spin Dynamics near Bicritical Points in Uniaxial Ferromagnets. Physical Review, B14:4068, 1976.
  • [2] R. Raghavan and D. L. Huber. Critical Spin Dynamics in EuO. Physical Review, B14:1185, 1976.
  • [1] R. Raghavan and D. L. Huber. Critical Spin Dynamics in the Ordered Phase of a Uniaxial Ferromagnet. Solid State Communications, 19:715, 1976. 3
Back to Top